

EECS 562
Homework #6

1. A 4 kHz message signal is transmitted using DSB-SC with a carrier frequency $f_c=980\text{kHz}$ over a noisy channel with noise power spectral density of $\eta/2=2\times10^{-17}\text{ W/Hz}$. The received signal power is -100dBm . What is the post-detection S/N?
2. An AM receiver uses an envelope detector. The transmitter operates at total transmit power of 2KW with a 75% modulation index. The information signal is $m(t) = \cos(2000\pi t)$. The path loss between the transmitter and AM receiver is 93 dB. The noise power spectral density of $\eta=-113\text{dBw/Hz}$. The RF bandwidth is 10kHz. What is the post-detection S/N?
3. Consider an FM transmitter with a transmitter power of 2KW. The path loss is 93dB, $\eta=-113\text{dBw}$. The baseband bandwidth is 53 kHz. The modulation index is $\beta=4$.
 - a) Find the $(S/N)_{bb}$ in dB?
 - b) Find the $(S/N)_o$ in dB?
4. Consider an FM transmitter with a transmitter power of 2KW. The path loss is 93dB, $\eta =-113\text{dBw/Hz}$. The baseband bandwidth is 53 kHz.
 - a. Find β such that the $(S/N)_o=23\text{dB}$?
 - b. What is B_{RF} ?
5. Comparison of system resources (power and B_{RF}) for different modulation schemes. In this case:
 - Path loss = 93dB
 - $\eta =-113\text{dBw/Hz}$
 - B_x = baseband bandwidth = 53 kHz
 a. To meet a required output signal-to-noise ratio, $(S/N)_o=44.5\text{dB}$ fill out the table below:

Modulation	Transmit power = P_T (dBw)	Transmit power = P_T (Watts)	B_{RF} (kHz)	B_{RF}/B_x BW Expansion Factor
DSB-SC				
SSB				
AM with $m = 0.75$				
AM with $m = 1.0$				
FM with $\beta=1.67$				
FM with $\beta=4$				
FM with $\beta=7.5$				

- b. For the FM cases above discuss the trade-off between B_{RF} and P_T .
- c. Comment of the feasibility of using each modulation format given the required transmit power.
[Consider using a spreadsheet to do these calculations]